

PKM EDUCATIONAL TRUST® R R Institute of Technolog

♥ RAJA REDDY LAYOUT, NEAR CHIKKABANAVARA RAILWAY STATION, CHIKKABANAVARA,

An Autonomous Institution under VTU

Approved by AICTE, New Delhi & Government of Karnataka

Course Title:	Fundamentals of Semiconductor Devices	Semester	I/II	
Course Code:	BETCK105N /205N	CIE Marks	50	
Course Type (Theory/Practical	Theory	SEE Marks	50	
/Integrated)	2	Total Marks	100	
Teaching Hours/Week (L:T:P: S)	3:0:0:0	Exam Hours	03	
Total Hours of Pedagogy	40 hours	Credits	03	

Course Learning objectives:

CLO1: Describe the basic physical properties of semiconductors and what material parameters affect these properties

CLO2: To make students understand the fundamentals of electronic devices.

Teaching-Learning Process

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching –Learning more effective

- 1. Lecture method (L) does not mean only the traditional lecture method, but a different type ofteaching method may be adopted to develop the outcomes.
- 2. Show Video/animation films to explain the functioning of various analog and digital circuits.
- 3. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply recallit.
- 4. Show the different ways to solve the same problem and encourage the students to come upwith their own creative ways to solve them.
- 5. Discuss how every concept can be applied to the real world and when that's possible, it helps improve the students' understanding.

Module-1: Introduction to semiconductor devices and Technology (8 Hours)

Self-study: Band structure of various semiconductors, tunneling

Device building blocks, major semiconductor devices, key semiconductor technologies, technology trends, semiconductor materials, basic crystal structures, valence bands, energy bands, intrinsic carrier

concentration, donors & acceptors, carrier drift, carrier diffusion, generation & recombination process. (**RBT levels: L1, L2, L3**)

Module-2: Light emitting diodes & lasers (8 Hours)

Self-study: semiconductor lasers

Radiative Transitions and Optical Absorption, Light-Emitting Diodes, Various Light-Emitting Diodes, Opto-isolators(basic working only),Semiconductor Lasers Photo detectors & Solar cells: Photodetectors, Solar Cells, Silicon and Compound-

Semiconductor Solar Cells, Third-Generation Solar Cells

(RBT levels: L1, L2, L3)

Module-3: Bipolar transistors & related devices (8 Hours)

Self-study: fabrication of various devices

Transistor Action, Static Characteristics of Bipolar Transistors, Frequency Response and Switching of Bipolar Transistors, Nonideal Effects, Heterojunction Bipolar Transistors, Thyristors and Related Power Devices

(**RBT levels:** L1, L2, L3)

Module-4: Integrated Devices (8 Hours)

Self-study: Nano devices Passive Components, MOSFET Technology, MESFET Technology, Challenges for Nanoelectronics (**RBT levels: L1, L2, L3**)

Module-5: Special semiconductor devices (8 Hours)

Self-study: Dual gate MOSFET

Thermistors, senistors, Barretters, Gunn diode, Zener diode, Tunnel diode, PIN diode, Schottky diode, SCR, TRIAC, DIAC, DIAC as lamp dimmer, IGBT, LCD- basic principle of operation and characteristics (Text book 2: chapter 5)(basic structure and operation only) (**RBT levels: L1, L2, L3**)

Course outcomes:

At the end of the course the student will be able to:

CO1: Apply the knowledge of basic semiconductor material physics

CO2: Analyze the characteristics of various electronic devices like LEDs and Lasers

CO3: Classify and analyze the various circuit configurations of Bipolar Transistors and related devices.

CO4: Analyze the various circuit configurations of FETs and related devices.

CO5: Illustrate the qualitative knowledge of Power electronic Devices. Become aware of the latest technological changes in Display Devices.

Course Assessment and Evaluation Details (both CIE and SEE)

Continuous Internal Evaluation: 50 marks								
Theory Assessment	Marks	Reduced marks						
Tool								
IAT-1	25	25						
IAT-2	25							
Assessment -1(activity based)	25	25						
Assessment-2(activity based)	25							
Semester End Examination (S	SEE) : 50 marks	· ·						
SEE	Marks	Reduced marks						
Course end examination (Answer any one question from each unit – Internalchoice)	n 100	50						

Activity based learning:

- 1. Hands-on: To visualize the atomic structure of semiconductors, guide students to conduct smallgroup activities using a molecular structure model.
- 2. Problem-based activities: In-class worksheet problems
- 3. Computer modeling: Computer simulations and incorporation of computer programs in teaching activities are also an effective way of improving the learning outcomes

Suggested Learning Resources:

Text books :

1.S.M.Sze, M K Lee, "Semiconductor Devices-Physics & Technology", John wiley & Sons2. Sanjeev Gupta & Santosh Gupta, "Electronic Devices & Circuits", Dhanpat Rai publications, 2017 edition)

Reference Books:

1. Donald Neamen, Semiconductor Physics and Devices, 3rd Edition

e-resources:

- 1.https://archive.nptel.ac.in/courses/108/108/108108122

- <u>https://voutu.be/k6ZxP9Yr02E</u>
 <u>https://voutu.be/JA3sCmrv11M</u>
 <u>https://voutu.be/mHAyOhz0ILE</u>
- 5. https://youtu.be/N01BYteinzE
- 6. https://www.classcentral.com/course/swayam-fundamentals-of-electronic-device-fabrication-14080

Course articulation matrix

COs	POs										PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO 1	PSO2
CO1	3												3	
CO2	2	3											3	
CO3	2	3											3	
CO4	2	3											3	
CO5	2	3										1	3	